
Solving the Sequential Ordering Problem with
anytime tree search

Luc Libralesso1, Abdel-Malik Bouhassoun1, Hadrien Cambazard1, and Vincent
Jost1

Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France
luc.libralesso@grenoble-inp.fr

Abstract. We study several generic tree search techniques applied to
the Sequential Ordering Problem. This study enables us to propose a
simple yet competitive tree search. It consists of an iterative beam search
that favors search over inference and integrates prunings that are inspired
by dynamic programming. The resulting method proves optimality on
half of the SOPLIB instances, 10 to 100 times faster than other existing
methods. Furthermore, it finds new best-known solutions on 6 among
7 open instances of the benchmark in a small amount of time. These
results highlight that there is a category of problems (containing at least
SOP) where an anytime tree search is extremely efficient (compared to
classical meta-heuristics) but was underestimated.

Keywords: Tree Search · Beam Search · Dynamic Programming · Se-
quential Ordering Problem

While facing a hard combinatorial optimization problem, two types of solutions
are usually considered:

– Exact methods that allow to find optimal solutions at the price of a poten-
tially very long computation time. In this category, we find Mixed Integer
Programming methods, Constraint Programming etc. This kind of methods
generally use tree search techniques that usually rely on strong bounds and
cuts like the cutting-plane algorithm or the branch-and-price algorithm etc.

– Meta-heuristics that allow to find near-optimal solutions. These methods
usually rely on fast operators (neighbourhoods, crossovers, mutations, etc.)
and various search strategies (Simulated Annealing, Tabu Search, Evolution-
ary Algorithms, Ant Colony Optimization).

Tree search is mainly found in exact methods. In this specific context, Depth
First Search or Best First Search seem to be the most suited methods. The
first one for its simplicity, limited memory usage and backtrack-friendliness.
The second for its ability to improve quickly bounds and prove optimality in a
(relatively) small amount of nodes1. However, on large instances, these methods
do not usually obtain good quality solutions. Indeed, Depth First Search is prone

1 We note that this hypothesis is sometimes questioned [4]



2 L. Libralesso et al.

to chose a bad branch early in the tree search and is not able to escape from it.
Best First Search is prone to find solutions late in the search (thus not finding any
solutions within hours of computation). We also note that work have been done
to allow these methods to find good solutions fast (using a restarting strategy for
Depth First Search and diving for Best First Search). But these improvements
are usually insufficient to compete with classical meta-heuristics.

A common opinion regarding tree-search is well summarized in [2]:
“Tree search approaches like branch-and-bound are in essence designed to

prove optimality [...] Moreover, tree search has an exponential behavior which
makes it not scalable faced with real-world combinatorial problems inducing mil-
lions of binary decisions.”

It may be interesting to re-evaluate the inefficiency of tree search to solve large-
scale/industrial combinatorial optimization problems. Indeed, there are other
tree search techniques originally proposed in the sixties in AI or planning con-
ferences. To cite a few, we find (Complete Anytime) Beam Search [5], well-known
for its success to solve scheduling or packing problems, or, Limited Discrepancy
Search, used intensively in Constraint Programming solvers. Tree Search can be
used to find solutions quickly and continuously improve them similarly to the
behavior of classical meta-heuristics (until they reach a stopping criterion or
prove optimality by depleting the search tree). We qualify search methods with
this property as Anytime algorithms (in our case Anytime Tree Search).

In this presentation, we discuss a simple anytime tree search algorithm for
the Sequential Ordering Problem [1] (Asymmetrical Traveling Salesman Problem
with precedence constraints). This problem have been studied intensively during
the last 30 years and a large variety of methods have been developed to solve it.
It is especially well-known because it has instances with less than 50 cities that
are still open. We propose a simple anytime tree search algorithm (approximately
200 lines of C++ code) that results from a study over many Branch-and-Bound
algorithmic components. This method was able to improve best-known solutions
on 6 over 7 open instances from the SOPLIB [3].

References

1. Laureano F Escudero. An inexact algorithm for the sequential ordering problem.
European Journal of Operational Research, 37(2):236–249, 1988.

2. Frédéric Gardi, Thierry Benoist, Julien Darlay, Bertrand Estellon, and Romain
Megel. Mathematical programming solver based on local search. Wiley Online Li-
brary, 2014.

3. Luc Libralesso, Abdel-Malik Bouhassoun, Hadrien Cambazard, and Vincent Jost.
Tree searches for the Sequential Ordering Problem. working paper or preprint,
January 2020.

4. Lei Shang, Vincent T’Kindt, and Federico Della Croce. The memorization paradigm:
Branch & memorize algorithms for the efficient solution of sequencing problems.
preprint, 2018.

5. Weixiong Zhang. Complete anytime beam search. In AAAI/IAAI, pages 425–430,
1998.


