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This extended abstract is derived from our full paper1 to appear in [4]2.

Summary. The well-known traveling tournament problem as introduced by Eas-
ton, Nemhauser, and Trick [3] in 2001 is a hard optimization problem in which
a double round robin sports league schedule has to be constructed while mini-
mizing the total travel distance over all teams. The teams start and end their
tours at their home venues, are only allowed to play a certain maximum number
of games in a row at home or away, and must not play against each other in
two consecutive rounds. The latter aspects introduce also a difficult feasibility
aspect. We study a beam search approach based on a recursive state space for-
mulation. We compare different state ordering heuristics for the beam search
based on lower bounds derived by means of decision diagrams. Furthermore, we
introduce a randomized beam search variant that adds Gaussian noise to the
heuristic value of a node for diversifying the search in order to enable a sim-
ple yet effective parallelization. In our computational study, we use randomly
generated instances to compare and tune algorithmic parameters and present
final results on the classical National League and circular benchmark instances.
Results show that this purely construction-based method provides mostly better
solutions than existing ant-colony optimization and tabu search algorithms and
it comes close to the leading simulated annealing based approaches without using
any local search. For two circular benchmark instances we found new best solu-
tions for which the last improvement was twelve years ago. The presented state
space formulation and lower bound techniques could also be beneficial for exact
methods like A∗ or DFS∗ and may be used to guide the randomized construction
in ACO or GRASP approaches.

Results. We conducted all our experiments on Intel Xeon E5-2640 processors
with 2.40 GHz and a memory limit of 32GB. We implemented our approach as
a prototype in Python 3.7, being aware that an implementation in a compiled
language would likely be substantially faster and would have a smaller memory
footprint. Table 1 compares our randomized beam search variant with either
lexicographic or random team ordering performed in parallel and independently
on 30 cores with several state-of-the-art approaches on three difficult NL and
CIRC instances3. Each beam search run was conducted with beam width β =
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Table 1. Comparison of the final solution lengths of parallel randomized beam search
using either lexicographic team ordering or random team ordering (RTO) with 30 in-
dependent runs each, parameters σrel = 0.001, β = 105, and the CVRPH [4, Sec. 6]
lower bound function (RBS-CVRPH) with the reported solution lengths of ant-colony
optimization (AFC-TTP) [5], composite-neighborhood tabu search (CNTS) [2], sim-
ulated annealing (TTSA) [1], and population-based simulated annealing (PBSA) [6],
where the latter is either used from scratch (PBSAFS) or starting from an already high
quality solution (PBSAHQ) provided by a TTSA run. †New best feasible solutions.

inst RBS-CVRPH RBS-CVRPH-RTO AFC-TTP CNTS TTSA PBSAFS PBSAHQ

min mean min mean min mean min mean min mean min mean min mean

nl12 112680 113594.6 112791 113581.5 112521 114427.4 113729 114880.6 112800 113853.0 110729 112064.0 n/a n/a

nl14 192625 198912.6 196507 199894.8 195627 197656.6 194807 197284.2 190368 192931.9 188728 190704.6 188728 188728.0

nl16 266736 271367.1 265800 270925.9 280211 283637.4 275296 279465.8 267194 275015.9 261687 265482.1 262343 264516.4

circ12 410 415.7 410 414.6 430 436.0 438 440.4 n/a n/a 404 418.2 408 414.8

circ14 632 641.0 630† 640.7 674 692.8 686 694.4 n/a n/a 640 654.8 632 645.2

circ16 918 933.8 910† 931.6 1034 1039.6 1016 1030.0 n/a n/a 958 971.8 916 917.8

circ18 1300 1322.0 1296 1320.4 1486 1494.8 1426 1440.8 n/a n/a 1350 1371.6 1294 1307.0

105 and randomization parameter σrel = 0.001 resulting in equally gentle noise
applied to the f -values of the states in every layer. Runtimes per run go up to
30 hours for the largest instances. The table shows minimum and mean values
for solution lengths of finally best solutions. We observe that we can compete
well with the other mainly constructive approach “ant colony optimization with
forward checking and conflict-directed backjumping” (AFC-TTP) from [5] and
the composite-neighborhood tabu search (CNTS) from [2] on the NL instances
and obtain better results than these for the CIRC instances, without hybridizing
with a final local search. For CIRC instances we can also obtain similar results to
population-based simulated annealing from scratch (PBSAFS) from [6], which
uses parallel simulated annealing. For the circular instances with 14 and 16
teams, we found new best feasible solutions, already incorporated in Michael
Trick’s TTP web page4. The strongest results overall for NL and CIRC are
provided by simulated annealing (TTSA) from [1] and its parallel variant PBSA
from [6].

Future Work. A reimplementation in a compiled language is desirable to tackle
even higher beam widths. So far we did not consider any local search, but a
natural extension would be to try to further improve a number of best solutions
provided by our beam search by local search. To tackle instances with more than
18 teams with lower bound guidance, an interesting direction could be to use
relaxed decision diagram for the bound pre-calulcations, in order to keep the
memory and computational demand reasonably bounded.

4 https://mat.tepper.cmu.edu/TOURN/
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